ORIGINAL PAPER

Kunal Roy · Andrey A. Toropov

QSPR modeling of the water solubility of diverse functional aliphatic compounds by optimization of correlation weights of local graph invariants

Received: 2 April 2004 / Accepted: 2 November 2004 / Published online: 29 January 2005 © Springer-Verlag 2005

Abstract The optimization of correlation weights scheme was used to model the water solubility (ln S) of diverse functional aliphatic compounds (n = 193). The optimized descriptor formulated based on the data of a training set (n = 96) generated statistically acceptable relations for the training set ($r^2 = 0.987$), test set (n = 97; $r^2 = 0.986$) and combined set ($r^2 = 0.987$). When the relation of ln S values with the optimized molecular descriptor formulated based on the data of the training set was used for the calculation of ln S values of the training set, r_{pred}^2 value was found to be satisfactory (0.988), which is indicative of the predictive potential of the scheme. The results indicate the promising potential of the optimization of correlation weights scheme in modeling studies.

Keywords $QSAR \cdot QSPR \cdot Optimization of correlation weights \cdot Flexible descriptors \cdot Nearest neighbouring codes \cdot Water solubility$

Introduction

Numerical representation of chemical structure and its relation with property or biological activity have lead to the fascinating fields of quantitative structure-activity/ property/toxicity relationship (QSAR/QSPR/QSTR)

K. Roy (🖂)

Drug Theoretics and Cheminformatics Lab, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India E-mail: kunalroy_in@yahoo.com Tel.: +91-33-24146676 Fax: +91-33-24146677 http://www.geocities.com/kunalroy_in

A. A. Toropov

Uzbekistan Academy of Sciences Research Institute 'Algorithm-Engineering', 700125 F. Khodjaeva Street 25, Tashkent, Uzbekistan studies. Among the different descriptors available, topological ones, formulated by graph theoretic approaches, [1–3] have been used extensively in modeling studies because of their ease of computation and low computational requirements [4–11]. Topological descriptors consider the arrangements of atoms in the (mostly hydrogen-suppressed) molecular graph, interatomic distance, kind of atoms, branching and cyclicity.

A huge number of topological descriptors are currently available for modeling studies. Although many such descriptors are highly intercorrelated, a large amount of chemical information can be decoded by the use of an appropriate combination of useful descriptors. Selection of appropriate descriptors from the plethora of available descriptors is a real problem in modeling studies. One has to take care that descriptors are chosen to extract the maximum amount of chemical information and, at the same time, the descriptors used in a multiple regression equation should not be inter-correlated. The concept of flexible topological descriptors, originally introduced by Randic, [12–14] is a major breakthrough in this regard as the difficulties of multiple regression are not present in such an approach. Flexible topological descriptors do not have a definite predetermined formalism, that can be applied to any sets of compounds for modeling biological activity or physicochemical properties. The formalism of such descriptors is defined based on an optimization procedure to obtain the best relation for a particular data set. Thus, the definition of the descriptors will vary from one data set to another and the ultimate objective of the iterative optimization procedure is to obtain the best predictive model. Several descriptors have been proposed in this line and their use has also been explored [15-22]. Among these descriptors, an interesting sort of flexible descriptors is based on the optimized correlation weights of the local graph invariants [19-21]. This scheme has been used successfully to model different sets of biological activity and physicochemical property data [23–32].

Like partition coefficient parameter in the *n*-octanol-water system, [33-39] water solubility is another very important physicochemical parameter that can account for many properties of organic chemicals including the biopharmaceutical behavior of drugs [40]. Many attempts have been made to model water solubility using different indices, e.g., the Wiener and connectivity indices, [41] the PI index, [42] quantum chemical descriptors, [43, 44] dipole moment, surface area, volume, molecular weight, number of hydrogen bond acceptor/donor(s) and number of rotable bonds, [45] the TAU index, [46] the modified Wiener index, [47] etc., and different statistical and QSAR methods, e.g., genetic algorithm and partial least squares, [48] principal component analysis, [49] comparative molecular field analysis, [50] artificial neural network, [51] SIMCA, [52] etc.

In the present communication, we have applied the optimization of correlation weights scheme for modeling water solubility of diverse functional aliphatic compounds to show the usefulness of the scheme. Although mostly straight chain aliphatic compounds have been considered, the data set also contains a few alicyclic compounds.

Materials and methods

The molecular descriptor used in the present modeling studies was calculated based on the labelled hydrogen filled graph (LHFG) in the following manner:

$$DCW(\mathbf{a}_k, \mathbf{LI}_k) = \sum_{k=1}^{n} CW(\mathbf{a}_k) + \sum_{k=1}^{n} CW(\mathbf{LI}_k).$$
(1)

In the above equation, the DCW term represents the molecular descriptor, the CW terms represent the correlation weights, a_k is the chemical element of the *k*th vertex of the LHFG and LI_k is the numerical value of a local invariant of the LHFG. As local invariants, we have used nearest neighboring codes (NNC). [32] The NNC of the *k*th vertex of the LHFG is calculated as

$$NNC_k = 100N_T + 10N_C + N_H.$$
 (2)

In the above equation, $N_{\rm T}$, $N_{\rm C}$ and $N_{\rm H}$ represent the total number of vertices, number of carbons and number of hydrogens, respectively, connected to the *k*th vertex. An example of the calculation of NNC for methyl acetate is shown in Table 1. NNC is a mathematical function of both the number and kind of neighbors for an atom.

The descriptor (DCW), as defined in Eq. 1, is obtained from special correlation weights of local graph invariants, which are obtained by a Monte Carlo optimization procedure. The aim of this optimization procedure is to make the correlation coefficient between the property/activity of the training set under consideration and the descriptor (DCW) as large as possible. The predictive ability of the model should be validated using a test set.

The water solubility (ln *S*) values of diverse functional aliphatic compounds (n = 193) were taken from the literature. [8, 53] The data set was divided into a training set and a test set, as listed in Table 2. The starting value of each correlation weight was 1 and using a Monte Carlo iterative optimization procedure, [20, 21, 22] the best values of correlation weights [CW(a_k) and CW(LI_k)] (which give largest possible correlation

 Table 1
 Example of the calculation the DCW value of methyl acetate based on the CWs listed in Table 3 [the adjacency matrix of methyl acetate is also shown]

Atom (a _k)	01	C2	O3	C4	Н5	H6	H7	C8	H9	H10	H11
01	0	1	0	0	0	0	0	1	0	0	0
C2	1	0	1	1	0	0	0	0	0	0	0
O3	0	1	0	0	0	0	0	0	0	0	0
C4	0	1	0	0	1	1	1	0	0	0	0
H5	0	0	0	1	0	0	0	0	0	0	0
H6	0	0	0	1	0	0	0	0	0	0	0
H7	0	0	0	1	0	0	0	0	0	0	0
C8	1	0	0	0	0	0	0	0	1	1	1
H9	0	0	0	0	0	0	0	1	0	0	0
H10	0	0	0	0	0	0	0	1	0	0	0
H11	0	0	0	0	0	0	0	1	0	0	0
Values of NNC _k CW(Atom) CW(NNC _k) CW(a_k) + CW(NNC _k) DCW	220 1.696 0.237 1.933 DCW(a	$310 \\ -0.345 \\ -0.259 \\ -0.604 \\ a_k, NNC_k)$	110 1.696 -0.193 1.503 $= \sum CW($	$413 - 0.345 - 0.327 - 0.672 (a_k) + \sum C$	$110 \\ -0.140 \\ -0.193 \\ -0.333 \\ W(NNC_{\ell})$	$ \begin{array}{r} 110 \\ -0.140 \\ -0.193 \\ -0.333 \\ = 0.949 \end{array} $	$ \begin{array}{r} 110 \\ -0.140 \\ -0.193 \\ -0.333 \end{array} $	$\begin{array}{r} 403 \\ -0.345 \\ 1.132 \\ 0.787 \end{array}$	$ \begin{array}{r} 110 \\ -0.140 \\ -0.193 \\ -0.333 \end{array} $	$ \begin{array}{r} 110 \\ -0.140 \\ -0.193 \\ -0.333 \end{array} $	$ \begin{array}{r} 110 \\ -0.140 \\ -0.193 \\ -0.333 \end{array} $

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sl. no.	Compound name	Molecular	Water solubility (ln S)			
			Descriptor (DCW)	Obs. ^a	Calc. ^b	Res.	
	Training set						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	n-Butanol	-0.214	0.006	-0.215	0.221	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	2-butanol	0.282	0.066	0.284	-0.218	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	3-methylbutanol	-1.2/3	-1.16/	-1.281	0.114	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	2-pentanol	-0.972	-0.635	-0.9/8	0.343	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2 Mathyl 2 butanal	-0.777	-0.403	-0.782	0.377	
s 3-Methyl-spentanol -1.000 -0.030 -1.006 0.176 9 2-Methyl-spentanol -0.805 -0.801 -0.414 10 2.3-Dimethyl-butanol -2.232 -2.390 -2.243 -0.334 11 3.3-Dimethyl-butanol -1.252 -2.397 -2.245 -0.345 13 2-Ethylbutanol -2.254 -2.268 0.005 15 3-Methyl-3-pentanol -2.254 -2.268 0.005 16 3-Ethyl-5-pentanol -2.244 -1.917 -2.268 0.005 17 2.4.Dimethyl-5-pentanol -3.090 -2.801 -3.109 0.308 19 n.4.Heptanol -3.490 -3.801 -3.502 0.005 22 -0.018 -2.311 -3.026 0.005 0.0069 21 2.3.Trimethyl-5-pentanol -3.018 -2.311 -3.02 0.035 22 -0.018 -2.311 -4.063 -0.024 -0.235 22 -0.0410 -5.988 -5.	7	2-Weenly-2-butanoi	-2 226	-1 995	-2 230	0.085	
9 2.MEthyl-1-pertanol -2.031 -1.609 -2.443 0.443 10 2.3-Dimethyl-2-butanol -2.031 -0.644 -0.341 11 3.3-Dimethyl-2-butanol -2.232 -2.890 -2.245 -0.341 12 3.3-Dimethyl-2-butanol -2.527 -2.787 -2.246 -0.316 13 2-fthyl-3-pertanol -2.254 -2.263 -2.268 0.005 16 3-fthyl-3-pertanol -2.090 -1.317 -2.268 0.035 17 2.3-Dimethyl-3-pertanol -2.090 -2.331 -3.010 0.308 20 n-Octanol -5.3230 -5.401 -5.026 -0.139 21 $2.2.3.7$ frimethyl-3-pertanol -3.018 -2.931 -3.066 0.0308 23 2-botanol -5.988 -6.921 -0.232 -0.732 24 Nonanol -5.788 -5.572 -6.024 -0.272 25 Nonanol -5.799 -5.779 <td>8</td> <td>3-Methyl-3-pentanol</td> <td>-1.000</td> <td>-0.830</td> <td>-1.006</td> <td>0.176</td>	8	3-Methyl-3-pentanol	-1.000	-0.830	-1.006	0.176	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	2-Methyl-3-pentanol	-2.031	-1.609	-2.043	0.170	
11 3.4-Dimethyl-1-butanol -2.232 -2.590 -2.445 -0.345 12 3.3-Dimethyl-2-butanol -1.776 -1.410 -1.746 0.336 13 2-Ethyl-3-pertanol -2.577 -2.787 -2.426 -0.246 16 3-Methyl-3-pertanol -2.254 -1.937 -2.268 0.051 17 2.3-Dimethyl-3-pertanol -2.099 -1.937 -2.071 0.134 18 2.4-Dimethyl-3-pertanol -3.090 -2.801 -3.100 0.308 20 $-Octanol$ -5.230 -5.401 -5.262 -0.139 21 $2.2.3-Trimethyl-3-pertanol$ -5.035 -4.996 -5.232 -0.348 22 $2-Octanol$ -6.434 -6.907 -6.523 -0.348 22 $2-Nonanol$ -5.988 -6.519 -6.624 0.072 23 2.7819 -5.789 -5.272 -4.791 -0.781 23 2.7819 -5.799 -5.744 -6.224 0.072 24 $-Nonanol$ <	10	2.3-Dimethyl-2-butanol	-0.805	-0.851	-0.810	-0.041	
12 3.5-Dimethyl-2-butanol -1.736 -1.410 -1.746 0.336 13 2-Ethylbutanol -2.527 -2.787 -2.542 -0.245 14 n -Hepatnol -2.254 -2.263 -2.268 0.055 16 3 -Ethylbut-3-pentanol -2.254 -1.917 -2.268 0.051 17 2.4 Dimethyl-3-pentanol -3.090 -2.801 -3.109 0.308 19 4 -Heptanol -3.480 -3.196 -3.501 0.305 21 $2.2.3$ -Trimethyl-3-pentanol -5.018 -2.931 -3.036 0.105 22 $-2.0tanol$ -5.330 -5.401 -5.262 -0.138 22 $-2.0tanol$ -5.938 -6.517 -6.523 -0.348 23 $-2.10thylb-theptanol$ -5.988 -5.572 -6.632 0.234 27 $3.5.0mmethylb-theptanol$ -5.788 -5.572 -4.731 -0.731 28 $1.1.0thylb-trimol$ -4.728 -5.572 -1.738 -5.622 0.334 <t< td=""><td>11</td><td>3.3-Dimethyl-1-butanol</td><td>-2.232</td><td>-2.590</td><td>-2.245</td><td>-0.345</td></t<>	11	3.3-Dimethyl-1-butanol	-2.232	-2.590	-2.245	-0.345	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	3.3-Dimethyl-2-butanol	-1.736	-1.410	-1.746	0.336	
14 n-Heptatol -3976 -4.166 -4.00 -0.166 15 3-Methyl-3-bentanol -2.254 -1.917 -2.268 0.005 16 3-Ethyl-3-pentanol -2.059 -1.917 -2.268 0.351 18 2.4-Dimethyl-3-pentanol -3.090 -2.801 -3.109 0.305 20 n-Octanol -5.230 -5.401 -5.262 -0.139 21 2.2.3-Trimethyl-3-pentanol -3.018 -2.931 -3.036 0.105 22 2-Octanol -4.734 -4.755 -4.763 0.0069 22 2-Octanol -5.988 -6.319 -0.624 -0.295 24 n-Nonanol -5.988 -5.928 -5.622 0.334 25 2-Nonanol -5.988 -5.928 -5.622 0.334 26 4.Nonanol -4.762 -5.72 -4.791 -0.781 27 3.5-Dimethyl-4-beptanol -5.598 -5.622 0.334 28 1.1-Diethyl-pentanol -7.783 -8.17 -7.785 -0.732 28 1.1-	13	2-Ethylbutanol	-2.527	-2.787	-2.542	-0.245	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	n-Hepatnol	-3.976	-4.166	-4.00	-0.166	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	3-Methyl-3-hexanol	-2.254	-2.263	-2.268	0.005	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	3-Ethyl-3-pentanol	-2.254	-1.917	-2.268	0.351	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	17	2,3-Dimethyl-3-pentanol	-2.059	-1.937	-2.071	0.134	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	2,4-Dimethyl-3-pentanol	-3.090	-2.801	-3.109	0.308	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	4-Heptanol	-3.480	-3.196	-3.501	0.305	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	n-Octanol	-5.230	-5.401	-5.262	-0.139	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	2,2,3-Trimethyl-3-pentanol	-3.018	-2.931	-3.036	0.105	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	2-Octanol	-4.734	-4.755	-4.763	0.008	
24n-Nonanol -6.484 $-6.90'$ -6.223 -0.384 252-Nonanol -5.988 -6.319 -6.024 0.072 264-Nonanol -5.988 -5.298 -5.632 0.334 273.5.Dimethyl-4-heptanol -5.988 -5.298 -5.632 0.334 281.1-Diethyl-pentanol -4.762 -5.772 -4.791 -0.781 29 $7-Methyloctanol$ -6.289 -5.769 -5.834 0.065 30 $3.5.5$ -Trimethylhexanol -7.738 -8.517 -7.785 -0.732 20 n -Tetradecanol -12.754 -12.772 -12.831 0.059 33 n -Pentadecanol -14.008 -13.796 -14.092 0.296 34 n -Hexanol -15.262 -14.603 -15.354 0.751 35 2.2 -Dimethylpropanol -0.978 -0.889 -0.984 0.095 36 1 -penten-3-ol 0.104 0.035 0.105 -0.070 37 2 -Hexen-4-ol -1.034 -0.939 -1.040 0.101 38Methyl formate -1.265 -1.133 -1.273 0.140 40Butyl formate -2.519 -2.303 -2.534 0.231 41Isobutyl acetate -2.678 -2.849 -2.694 -0.154 42Butyl formate -5.381 -4.721 -5.413 0.692 43Isopertyl porpinate -5.381 -4.723 -5.187 -0.324 44 <t< td=""><td>23</td><td>2-Ethylhexanol</td><td>-5.035</td><td>-4.996</td><td>-5.065</td><td>0.069</td></t<>	23	2-Ethylhexanol	-5.035	-4.996	-5.065	0.069	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	n-Nonanol	-6.484	-6.907	-6.523	-0.384	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	2-Nonanol	-5.988	-6.319	-6.024	-0.295	
22 $3,5$ $-3,528$ $-3,525$ $-3,532$ $0,534$ 28 $1,1$ Diefuly-pentanol $-4,762$ $-5,572$ $-4,791$ $-0,781$ 29 7 .Methyloctanol $-6,289$ $-5,744$ $-6,327$ $0,583$ 30 $3,5,5$ 7 .mitethylhexanol $-5,799$ $-5,760$ $-5,834$ $0,065$ 31 n -Decanol $-7,738$ $-8,517$ $-7,785$ $-0,732$ 33 n -Pentadecanol $-12,754$ $-12,777$ $-12,831$ $0,059$ 34 n -Hexanol $-15,262$ $-14,603$ $-15,354$ $0,751$ 35 $2,2.2$ -Dimethylpropanol $-0,978$ $-0,889$ -0.984 0.095 36 1 -penten-3-ol $0,104$ $0,035$ $0,105$ $-0,070$ 37 2 -Hexen-4-ol -1.034 -0.939 -1.040 $0,101$ 38 Methyl formate -1.265 -1.133 -1.273 0.140 40 Butyl acetate -2.678 -2.849 -2.694 -0.155 42 Butyl acetate -2.678 -2.849 -2.694 -0.155 42 Butyl acetate -2.873 -3.154 -2.890 -0.244 43 Isopentyl acetate -3.811 -4.721 -5.413 0.692 444 Hexyl acetate -3.816 -5.088 -5.217 0.129 45 Hexyl acetate -3.816 -5.088 -5.217 0.129 45 Hexyl acetate -3.816 -5.088 -5.217	20	4-INONANOI 2.5. Dimethyl 4 hentenel	-5.988	-5.952	-6.024	0.072	
231, -Definition-4, 102-5, 12-4, 191-0, 781 29 7-Methyloctanol-6, 289-5, 744-6, 3270, 583 30 3, 5, 5-Trimethylhexanol-5, 799-5, 769-5, 8340, 0065 31 n-Decanol-7, 738-8, 517-7, 785-0, 732 32 n-Tetradecanol-14, 008-13, 796-14, 0920, 296 34 n-Hexanol-15, 262-14, 603-15, 3540, 751 35 2, 2-Dimethylpropanol-0, 978-0, 889-0, 9840, 005 36 1-pentera-3-ol0, 1040, 0350, 105-0, 070 37 2.Hexen-4-ol-1, 1034-0, 399-1, 0400, 101 38 Methyl formate-1, 265-1, 133-1, 2730, 140 40 Butyl formate-2, 519-2, 203-2, 5340, 231 41 Isobertyl acetate-2, 678-2, 849-2, 694-0, 155 42 Butyl acetate-2, 873-3, 154-2, 890-0, 242 44 Pentyl acetate-3, 311-0, 2970-2, 391-0, 579 44 Isopentyl acetate-5, 381-4, 423-4, 152-0, 131 45 Hexyl acetate-5, 381-4, 423-4, 152-0, 131 45 Hexyl acetate-5, 381-5, 443-0, 6750, 372 45 Hexyl acetate-5, 381-5, 445-6, 750, 372 46 Isopentyl propionate-5, 186-5, 038<	27	5,5-Dimethyl-4-neptanol	-5.598	-5.298	-5.032	0.334	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	7 Methyleetanol	-4.762	-5.5/2	-4./91	-0.781	
0.50D.5.7 Hint metallor -2.573 -2.637 -2.637 0.005 31n-Decaol -7.738 -8.517 -7.785 -0.732 32n-Tetradecanol -12.754 -12.772 -12.831 0.059 33n-Pentadecanol -14.008 -13.796 -14.092 0.296 34n-Hexanol -15.262 -14.603 -15.354 0.751 352.2-Dimethylpropanol -0.978 -0.889 -0.984 0.095 361-penten-3-ol 0.104 0.035 0.105 -0.070 372-Hexen-4-ol -1.034 -0.939 -1.040 0.101 38Methyl formate 1.303 1.015 1.311 -0.296 39Propyl formate -2.519 -2.303 -2.534 0.231 41Isobutyl acetate -2.678 -2.849 -2.694 -0.155 42Butyl acetate -2.873 -3.154 -2.890 -0.264 43Isopentyl acetate -3.932 -4.398 -3.956 -0.442 44Pentyl acetate -5.381 -4.721 -5.413 0.692 46Isopropyl propionate -5.186 -5.038 -5.217 0.2391 47Isopentyl propionate -5.186 -5.033 -6.675 0.372 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.612 51Ethyl hexanoate -7.899 -7.799 -7.937 0.182 52Ethyl d	30	3.5.5.Trimethylbeyanol	-0.289	-5.744	-5.834	0.585	
111 <th< td=""><td>31</td><td>n-Decanol</td><td>-7738</td><td>-8 517</td><td>-7 785</td><td>-0.732</td></th<>	31	n-Decanol	-7738	-8 517	-7 785	-0.732	
33n-Pentadecanol -14.008 -13.796 -14.092 0.296 34n-Hexanol -15.262 -14.603 -15.354 0.751 352.2-Dimethylpropanol -0.978 -0.889 -0.984 0.095 361-penten-3-ol 0.104 0.035 0.105 -0.070 372-Hexen-4-ol -1.034 -0.939 -1.040 0.101 38Methyl formate 1.303 1.015 1.311 -0.296 39Propyl formate -2.678 -2.849 -2.664 -0.155 40Butyl acetate -2.678 -2.849 -2.664 -0.155 41Isobutyl acetate -2.873 -3.154 -2.890 -0.264 43Isopentyl acetate -3.932 -4.398 -3.956 -0.424 44Pentyl acetate -4.127 -4.283 -4.152 -0.131 45Hexyl acetate -5.381 -4.721 -5.413 0.692 46Isopropyl propionate -5.186 -5.088 -5.217 0.239 47Isopentyl propionate -5.186 -5.088 -5.217 0.239 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl heptanoate -6.635 -6.303 -6.675 0.372 50Ethyl netharde -9.143 -8.741 -9.198 0.457 53Ethyl octanoate -7.389 -7.799 -7.337 0.124 54Methyl sec	32	n-Tetradecanol	-12 754	-12772	-12.831	0.059	
34n-Hexanol -15.262 -14.603 -15.354 0.751 35 2.2-Dimethylpropanol -0.978 -0.889 -0.984 0.095 36 1-penten-3-ol 0.104 0.035 0.105 -0.070 37 2-Hexen-4-ol -1.034 -0.939 -1.040 0.101 38 Methyl formate 1.303 1.015 1.311 -0.296 39 Propyl formate -2.519 -2.303 -2.534 0.231 41 Isobutyl acetate -2.678 -2.849 -2.694 -0.155 42 Butyl acetate -2.678 -2.849 -2.694 -0.155 42 Butyl acetate -2.873 -3.154 -2.890 -0.264 43 Isopentyl acetate -4.127 -4.283 -4.152 -0.141 45 Hexyl acetate -5.381 -4.721 -5.413 0.692 44 Pentyl acetate -5.381 -4.225 -5.413 -0.812 44 Isopropyl propionate -5.186 -5.088 -5.217 0.129 48 Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49 Ethyl hexanoate -7.889 -7.799 -7.937 0.138 52 Ethyl nanoate -9.143 -8.741 -9.198 0.457 53 Ethyl acenoate -10.397 -9.434 -10.460 1.026 54 Methyl sec-butyl ether -1.817 -1.704 -1.528 0.124 <	33	n-Pentadecanol	-14.008	-13.796	-14.092	0.296	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	n-Hexanol	-15.262	-14.603	-15.354	0.751	
36I penten- $3-oi$ 0.104 0.035 0.105 -0.070 37 2 -Hexen- $4-oi$ -1.034 -0.939 -1.040 0.101 38 Methyl formate 1.303 1.015 1.311 -0.296 39 Propyl formate -1.265 -1.133 -1.273 0.140 40 Butyl formate -2.519 -2.303 -2.534 0.231 41 Isobutyl acetate -2.678 -2.849 -2.6094 -0.155 42 Butyl acetate -2.873 -3.154 -2.8900 -0.264 43 Isopentyl acetate -3.932 -4.398 -3.956 -0.442 44 Pentyl acetate -4.127 -4.283 -4.152 -0.131 45 Hexyl acetate -5.381 -4.721 -5.413 0.692 44 Pentyl acetate -5.381 -4.721 -5.413 0.692 45 Hexyl acetate -5.381 -4.721 -5.413 0.692 46 Isopropyl propionate -5.186 -5.088 -5.217 0.129 47 Isopentyl propionate -5.381 -4.465 -3.653 -0.812 49 Ethyl hexanoate -6.635 -6.303 -6.675 0.372 50 Ethyl hexanoate -7.889 -7.799 -7.937 0.188 52 Ethyl decanoate -10.397 -9.434 -10.460 1.026 54 Methyl sec-butyl ether -1.817 -1.704 -1.828 0.126	35	2.2-Dimethylpropanol	-0.978	-0.889	-0.984	0.095	
37 $2 \cdot Hexen + ol$ -1.034 -0.939 -1.040 0.101 38 Methyl formate 1.303 1.015 1.311 -0.296 39 Propyl formate -1.265 -1.133 -1.273 0.140 40 Butyl formate -2.519 -2.303 -2.534 0.231 41 Isobutyl acetate -2.678 -2.849 -2.694 -0.155 42 Butyl acetate -2.873 -3.154 -2.890 -0.264 43 Isopentyl acetate -3.932 -4.398 -3.956 -0.442 44 Pentyl acetate -4.127 -4.283 -4.152 -0.131 45 Hexyl acetate -5.381 -4.721 -5.413 0.692 46 Isopropyl propionate -5.381 -4.721 -5.413 0.692 47 Isopentyl propionate -5.381 -4.425 -3.653 -0.812 48 Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49 Ethyl hexnoate -5.381 -5.425 -5.413 -0.012 51 Ethyl hexnoate -7.889 -7.799 -7.937 0.138 52 Ethyl aconate -9.143 -8.741 -9.198 0.457 53 Ethyl decanoate -1.817 -1.704 -1.828 0.124 55 Butyl methyl ether -2.313 -2.303 -2.327 0.024 56 Dipropyl ether -2.373 -6.261 -6.172 -0.089 <	36	1-penten-3-ol	0.104	0.035	0.105	-0.070	
38Methyl formate1.3031.0151.311 -0.296 39Propyl formate -1.265 -1.133 -1.273 0.140 40Butyl formate -2.519 -2.303 -2.534 0.231 41Isobutyl acetate -2.678 -2.849 -2.694 -0.155 42Butyl acetate -3.932 -4.398 -3.956 -0.442 43Isopentyl acetate -3.932 -4.398 -3.956 -0.442 44Pentyl acetate -4.127 -4.283 -4.152 -0.131 45Hexyl acetate -5.381 -4.721 -5.413 0.692 46Isopropyl propionate -2.377 -2.970 -2.391 -0.579 47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.6633 -0.812 49Ethyl heptanoate -5.381 -5.425 -5.413 -0.012 51Ethyl canoate -9.143 -5.425 -5.413 -0.012 52Ethyl nanoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -1.0397 -9.434 -10.460 1.026 54Methyl se-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.373 -2.376 -3.364 -3.649 0.285 57Dibutyl ether -0.591 -0.484 -0.595 0.111	37	2-Hexen-4-ol	-1.034	-0.939	-1.040	0.101	
39Propyl formate -1.265 -1.133 -1.273 0.140 40Butyl formate -2.519 -2.303 -2.534 0.231 41Isobutyl acetate -2.678 -2.849 -2.694 -0.155 42Butyl acetate -2.873 -3.154 -2.890 -0.264 43Isopentyl acetate -3.932 -4.398 -3.956 -0.442 44Pentyl acetate -4.127 -4.233 -4.152 -0.131 45Hexyl acetate -5.381 -4.721 -5.413 0.692 46Isopropyl propionate -2.377 -2.970 -2.391 -0.579 47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl heptanoate -5.381 -5.425 -5.413 -0.012 51Ethyl octanoate -7.889 -7.799 -7.937 0.138 52Ethyl anoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sebutyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -2.373 -1.531 -2.387 0.856 57Dibutyl ether -0.591 -0.484 -0.595 0.111 59	38	Methyl formate	1.303	1.015	1.311	-0.296	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	Propyl formate	-1.265	-1.133	-1.273	0.140	
41Isobutyl acetate -2.678 -2.849 -2.694 -0.155 42Butyl acetate -2.873 -3.154 -2.890 -0.264 43Isopentyl acetate -3.932 -4.398 -3.956 -0.442 44Pentyl acetate -4.127 -4.283 -4.152 -0.131 45Hexyl acetate -5.381 -4.721 -5.413 0.692 46Isopenpyl propionate -2.377 -2.970 -2.391 -0.579 47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl hexanoate -6.635 -6.303 -6.675 0.372 50Ethyl hexanoate -5.381 -5.425 -5.413 -0.012 51Ethyl aconate -9.143 -8.741 -9.198 0.457 52Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 601,3-Dichloropropane -3.736 -3.716 -3.799 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 62<	40	Butyl formate	-2.519	-2.303	-2.534	0.231	
42Butyl acetate -2.873 -3.154 -2.890 -0.264 43Isopentyl acetate -3.932 -4.398 -3.956 -0.442 43Pentyl acetate -4.127 -4.283 -4.152 -0.131 45Hexyl acetate -5.381 -4.721 -5.413 0.692 46Isopropyl propionate -2.377 -2.970 -2.391 -0.579 47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl heptanoate -6.635 -6.303 -6.675 0.372 50Ethyl noate -5.381 -5.425 -5.413 -0.012 51Ethyl octanoate -7.889 -7.799 -7.937 0.138 52Ethyl anoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.3627 -3.364 -3.649 0.285 57Dibutyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 601.3-Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 62<	41	Isobutyl acetate	-2.678	-2.849	-2.694	-0.155	
43Isopentyl acetate -3.932 -4.398 -3.956 -0.442 44Pentyl acetate -4.127 -4.283 -4.152 -0.131 45Hexyl acetate -5.381 -4.721 -5.413 0.692 46Isopropyl propionate -2.377 -2.970 -2.391 -0.579 47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl heptanoate -6.635 -6.303 -6.675 0.372 50Ethyl noate -5.381 -5.425 -5.413 -0.012 51Ethyl canoate -9.143 -8.741 -9.198 0.457 52Ethyl nanoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.373 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.644 -0.595 0.111 59Ethyl propyl ether -2.373 -1.331 -2.387 0.856 601.3-Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63 <t< td=""><td>42</td><td>Butyl acetate</td><td>-2.873</td><td>-3.154</td><td>-2.890</td><td>-0.264</td></t<>	42	Butyl acetate	-2.873	-3.154	-2.890	-0.264	
44Pentyl acetate -4.127 -4.283 -4.152 -0.131 45Hexyl acetate -5.381 -4.721 -5.413 0.692 46Isopropyl propionate -2.377 -2.970 -2.391 -0.579 47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl heptanoate -6.635 -6.303 -6.675 0.372 50Ethyl hexanoate -5.381 -5.425 -5.413 -0.012 51Ethyl octanoate -7.889 -7.799 -7.937 0.138 52Ethyl anoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -6.135 -6.261 -6.172 -0.089 58Methyl t-butyl ether -2.373 -1.531 -2.387 0.856 601.3-Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64<	43	Isopentyl acetate	-3.932	-4.398	-3.956	-0.442	
45Hexyl acetate -5.381 -4.721 -5.413 0.692 46Isopropyl propionate -2.377 -2.970 -2.391 -0.579 47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl heptanoate -6.635 -6.303 -6.675 0.372 50Ethyl netanoate -7.889 -7.799 -7.937 0.138 51Ethyl octanoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 601.3-Dichloropropane -3.736 -3.756 -3.893 0.137 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074 <td>44</td> <td>Pentyl acetate</td> <td>-4.127</td> <td>-4.283</td> <td>-4.152</td> <td>-0.131</td>	44	Pentyl acetate	-4.127	-4.283	-4.152	-0.131	
46Isopropyl propionate $-2.37/$ -2.970 -2.391 -0.579 47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl heptanoate -6.635 -6.303 -6.675 0.372 50Ethyl hexanoate -5.381 -5.425 -5.413 -0.012 51Ethyl octanoate -7.899 -7.799 -7.937 0.138 52Ethyl anoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -0.591 -0.484 -0.595 0.111 59Ethyl routyl ether -2.373 -1.531 -2.387 0.856 601,3-Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 <td>45</td> <td>Hexyl acetate</td> <td>-5.381</td> <td>-4.721</td> <td>-5.413</td> <td>0.692</td>	45	Hexyl acetate	-5.381	-4.721	-5.413	0.692	
47Isopentyl propionate -5.186 -5.088 -5.217 0.129 48Isopropyl butyrate -3.631 -4.465 -3.653 -0.812 49Ethyl heptanoate -6.635 -6.303 -6.675 0.372 50Ethyl hexanoate -5.381 -5.425 -5.413 -0.012 51Ethyl octanoate -7.889 -7.799 -7.937 0.138 52Ethyl anoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 1.3 -Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074 65Iodomethane -2.364 -2.303 -2.378 0.075	46	Isopropyl propionate	-2.3//	-2.970	-2.391	-0.579	
48Isopropyl bulyrate -3.631 -4.463 -3.633 -0.812 49Ethyl heptanoate -6.635 -6.303 -6.675 0.372 50Ethyl hexanoate -5.381 -5.425 -5.413 -0.012 51Ethyl octanoate -7.889 -7.799 -7.937 0.138 52Ethyl anoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 601.3-Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074	4/	Isopentyl propionate	-5.186	-5.088	-5.217	0.129	
49Ethyl heptahoate -0.633 -0.673 0.372 50Ethyl hexanoate -5.381 -5.425 -5.413 -0.012 51Ethyl octanoate -7.889 -7.799 -7.937 0.138 52Ethyl nanoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 1.3 -Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074 65Iodomethane -2.364 -2.303 -2.378 0.075	48	Ethel haute a ste	-3.031	-4.405	-3.033	-0.812	
50Ethyl hexatoate -3.361 -3.423 -3.413 -0.012 51Ethyl octanoate -7.889 -7.799 -7.937 0.138 52Ethyl nanoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -6.135 -6.261 -6.172 -0.089 58Methyl t-butyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 601,3-Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074 65Iodomethane -2.364 -2.303 -2.378 0.075	49 50	Ethyl hexenoate	-0.035	-0.303	-0.0/3	0.372	
51Ethyl octahloate -7.369 -7.99 -7.957 0.136 52Ethyl nanoate -9.143 -8.741 -9.198 0.457 53Ethyl decanoate -10.397 -9.434 -10.460 1.026 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -6.135 -6.261 -6.172 -0.089 58Methyl t-butyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 1.3 -Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074 65Iodomethane -2.364 -2.303 -2.378 0.075	50	Ethyl actorecto	-5.581	-3.423	-3.413	-0.012	
32 23 -3.143 -3.141 -3.176 0.477 53 Ethyl decanoate -10.397 -9.434 -10.460 1.026 54 Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55 Butyl methyl ether -2.313 -2.303 -2.327 0.024 56 Dipropyl ether -3.627 -3.364 -3.649 0.285 57 Dibutyl ether -6.135 -6.261 -6.172 -0.089 58 Methyl t-butyl ether -0.591 -0.484 -0.595 0.111 59 Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 1.3 -Dichloropropane -3.736 -3.716 -3.759 0.043 61 Chloroform -2.114 -2.118 -2.127 0.009 62 2-Bromopropane -3.870 -3.756 -3.893 0.137 63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -2.364 -2.303 -2.378 0.075	52	Ethyl paposte	-9.143	-8.741	-7.937	0.158	
53Diff detailable -16.37 -9.34 -16.400 1.020 54Methyl sec-butyl ether -1.817 -1.704 -1.828 0.124 55Butyl methyl ether -2.313 -2.303 -2.327 0.024 56Dipropyl ether -3.627 -3.364 -3.649 0.285 57Dibutyl ether -6.135 -6.261 -6.172 -0.089 58Methyl t-butyl ether -0.591 -0.484 -0.595 0.111 59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 1.3 -Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074 65Iodomethane -2.364 -2.303 -2.378 0.075	53	Ethyl decapoate	-10 397	-0.741 -0.434	-10.460	1.026	
34Minip Recourse of the matrix -1.04 -1.025 0.124 55 Butyl methyl ether -2.313 -2.303 -2.327 0.024 56 Dipropyl ether -3.627 -3.364 -3.649 0.285 57 Dibutyl ether -6.135 -6.261 -6.172 -0.089 58 Methyl t-butyl ether -0.591 -0.484 -0.595 0.111 59 Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 $1,3$ -Dichloropropane -3.736 -3.716 -3.759 0.043 61 Chloroform -2.114 -2.118 -2.127 0.009 62 2-Bromopropane -3.870 -3.756 -3.893 0.137 63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	55	Methyl sec-butyl ether	-10.337	-9.434 -1.704	-1.828	0.124	
56Dipropyl ether -3.627 -3.364 -3.649 0.285 57 Dibutyl ether -6.135 -6.261 -6.172 -0.089 58 Methyl t-butyl ether -0.591 -0.484 -0.595 0.111 59 Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 $1,3$ -Dichloropropane -3.736 -3.716 -3.759 0.043 61 Chloroform -2.114 -2.118 -2.127 0.009 62 2-Bromopropane -3.870 -3.756 -3.893 0.137 63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	55	Butyl methyl ether	-2 313	-2.303	-1.323 -2.327	0.124	
57Dibutyl ether -6.135 -6.261 -6.172 -0.089 58 Methyl t-butyl ether -0.591 -0.484 -0.595 0.111 59 Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 $1,3$ -Dichloropropane -3.736 -3.716 -3.759 0.043 61 Chloroform -2.114 -2.118 -2.127 0.009 62 2-Bromopropane -3.870 -3.756 -3.893 0.137 63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	56	Dipropyl ether	-3.627	-3 364	-3.649	0.285	
1.113 1.113 1.113 1.113 1.113 1.113 58 Methyl t-butyl ether -0.591 -0.484 -0.595 0.111 59 Ethyl propyl ether -2.373 -1.531 -2.387 0.856 60 $1,3$ -Dichloropropane -3.736 -3.716 -3.759 0.043 61 Chloroform -2.114 -2.118 -2.127 0.009 62 2-Bromopropane -3.870 -3.756 -3.893 0.137 63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	57	Dibutyl ether	-6.135	-6.261	-6.172	-0.089	
59Ethyl propyl ether -2.373 -1.531 -2.387 0.856 601,3-Dichloropropane -3.736 -3.716 -3.759 0.043 61Chloroform -2.114 -2.118 -2.127 0.009 622-Bromopropane -3.870 -3.756 -3.893 0.137 63Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64Isoamyl bromide -6.679 -6.645 -6.719 0.074 65Iodomethane -2.364 -2.303 -2.378 0.075	58	Methyl t-butyl ether	-0.591	-0.484	-0.595	0.111	
1.3-Dichloropropane -3.736 -3.716 -3.759 0.043 61 Chloroform -2.114 -2.118 -2.127 0.009 62 2-Bromopropane -3.870 -3.756 -3.893 0.137 63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	59	Ethyl propyl ether	-2.373	-1.531	-2.387	0.856	
61 Chloroform -2.114 -2.118 -2.127 0.009 62 2-Bromopropane -3.870 -3.756 -3.893 0.137 63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	60	1.3-Dichloropropane	-3.736	-3.716	-3.759	0.043	
62 2-Bromopropane -3.870 -3.756 -3.893 0.137 63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	61	Chloroform	-2.114	-2.118	-2.127	0.009	
63 Isobutyl bromide -5.425 -5.600 -5.458 -0.142 64 Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	62	2-Bromopropane	-3.870	-3.756	-3.893	0.137	
64Isoamyl bromide -6.679 -6.645 -6.719 0.074 65 Iodomethane -2.364 -2.303 -2.378 0.075	63	Isobutyl bromide	-5.425	-5.600	-5.458	-0.142	
65 Iodomethane -2.364 -2.303 -2.378 0.075	64	Isoamyl bromide	-6.679	-6.645	-6.719	0.074	
	65	Iodomethane	-2.364	-2.303	-2.378	0.075	

Table 2 Optimized molecular descriptor and observed and calculated ln S values of diverse functional aliphatic compounds

Sl. no.	Compound name	Molecular	Water solubility (ln S)			
		Descriptor (DCW)	Obs. ^a	Calc. ^b	Res.	
66	Diiodomethane	-5.354	-5.388	-5.386	-0.002	
67	Dichloroethsulfide	-5.456	-5.457	-5.489	0.032	
68	n-Butane	-5.850	-6.020	-5.885	-0.135	
69	n-Pentane	-7.104	-7.530	-7.147	-0.383	
70	2,2-Dimethylpropane	-6.614	-7.198	-6.654	-0.544	
71	2,4-Dimethylpentane	-9.222	-10.109	-9.278	-0.831	
72	2,2,4-Trimethylpentane	-10.181	-9.501	-10.242	0.741	
73	2,2,5-Trimethylhexane	-11.435	-11.624	-11.504	-0.120	
74	Cyclohexane	-7.524	-7.322	-7.569	0.247	
75	1,2-Dimethylcyclohexane	-9.642	-9.830	-9.700	-0.130	
76	Cycloheptane	-8.778	-8.095	-8.831	0.736	
77	n-Hexane	-8.358	-9.106	-8.408	-0.698	
78	n-Octane	-10.866	-12.059	-10.931	-1.128	
79	3-Methylpentane	-8.163	-8.819	-8.212	-0.607	
80	1-Pentyne	-4.251	-3.707	-4.277	0.570	
81	1-Heptyne	-6.759	-6.931	-6.800	-0.131	
82	1-Nonanyne	-9.267	-9.694	-9.323	-0.371	
83	1,8-Nonadiyne	-6.414	-6.862	-6.453	-0.409	
84	1,6-Heptadiyne	-3.906	-4.030	-3.930	-0.100	
85	2-Heptene	-8.420	-8.796	-8.471	-0.325	
86	4-Methyl-1-pentene	-7.087	-7.460	-7.130	-0.330	
87	1,5-Hexadiene	-6.206	-6.194	-6.243	0.049	
88	1,4-Pentadiene	-4.952	-4.789	-4.982	0.193	
89	Cyclopentene	-5.078	-4.835	-5.109	0.274	
90	3-Methyl-2-butanone	-0.478	-0.286	-0.481	0.195	
91	3-Hexanone	-1.927	-1.904	-1.939	0.035	
92	3-Methyl-2-pentanone	-1.732	-1.545	-1.742	0.197	
93	4-Methyl-2-pentanone	-1.732	-1.637	-1.742	0.105	
94	4-Methyl-3-pentanone	-1.732	-1.870	-1.742	-0.128	
95	4-Heptanone	-3.181	-3.325	-3.200	-0.125	
96	5-Nonanone	-5.689	-5.929	-5.723	-0.206	
Test set						
1	2-methylpropanol	-0.019	0.023	-0.019	0.042	
2	n-Pentanol	-1.468	-1.347	-1.477	0.130	
3	2-Methylbutanol	-1.273	-1.058	-1.281	0.223	
4	3-pentanol	-0.972	-0.486	-0.978	0.492	
5	n-Hexanol	-2.722	-2.790	-2.738	-0.052	
6	3-Hexanol	-2.226	-1.832	-2.239	0.407	
7	2-Methyl-2-pentanol	-1.000	-1.117	-1.006	-0.111	
8	3-Methyl-2-pentanol	-2.031	-1.639	-2.043	0.404	
9	4-Methylpentanol	-2.527	-2.282	-2.542	0.260	
10	4-Methyl-2-pentanol	-2.031	-1.814	-2.043	0.229	
11	Cyclohexanol	-1.392	-0.960	-1.400	0.440	
12	2-Methyl-2-nexanol	-2.254	-2.4/3	-2.268	-0.205	
13	2,3-Dimethyl-2-pentanol	-2.059	-2.002	-2.0/1	0.069	
14	2,4-Dimethyl-2-pentanol	-2.059	-2.145	-2.0/1	-0.0/4	
15	2,2-Dimethyl-3-pentanol	-2.990	-2.643	-3.008	0.365	
10	3-Heptanol	-3.480	-3.194	-5.501	0.307	
1/	5-Nonanoi	-5.988	-0.119	-6.024	-0.095	
18	5-INORAROI 2 C Dimethyl 2 herter al	-5.988	-5./44	-0.024	0.280	
19	4 Denten 1 al	-3.398	-3.770	-3.032	-0.144	
20	4-Penten-1-01	-0.392	-0.555	-0.394	0.039	
21	J Havan 2 al	0.220	0.127	0.221	-0.094	
22	2 Mathyl 4 nantan 2 al	-1.130	-1.554	-1.13/	-0.197	
23	2-Methyl-4-penten-5-01	-0.935	-1.130	-0.961	-0.195	
24	Ethyl formate	-0.011	0.1/4	-0.011	0.103	
23 26	Propyl formate	-0.011 -1.265	-0.343 -1.174	-0.011 -1.272	-0.334	
20	Butyl formate	-1.203	-1.17+ -2.722	-1.273 -2.524	0.099	
21 28	1-Pentyl formate	-2.319 -3 773	-2.755 -3.500	-2.334 -3.706	-0.199	
20	Methyl acetate	- 5.775	- 5.500	-5.750	0.290	
27 30	Methyl acetate	0.242	0.024	0.955	0.230	
21	Fibyl acetate	0.265	0.924	0.955	-0.031	
22	Ethyl acetate	-0.303	-0.092	-0.30/	0.275	
32	Ethyr acetate Isopropyl acetate	-0.303	-0.009	-0.30/	0.298	
33	Isopropyl acetate	-1.123 1 122	-1.194	-1.150	-0.004	
34 25	Propyl acetate	-1.123 1.610	-1.243 1 704	-1.150	-0.115	
55	i topyi acetate	-1.019	-1./04	-1.029	-0.075	

Sl. no.	Compound name	Molecular	Water solubility ($\ln S$)			
		Descriptor (DCW)	Obs. ^a	Calc. ^b	Res.	
36	Propyl acetate	-1.619	-1.726	-1.629	-0.097	
37	Methyl propionate	-0.305	-0.345	-0.307	-0.038	
38	Methyl propionate	-0.305	-0.390	-0.307	-0.083	
39	Ethyl propionate	-1.619	-1.474	-1.629	0.155	
40	Ethyl propionate	-1.619	-1.666	-1.629	-0.037	
41	Propyl propionate	-2.873	-3.086	-2.890	-0.196	
42	Propyl propionate	-2.873	-2.992	-2.890	-0.102	
43	Butyl propionate	-4.12/	-4.305	-4.152	-0.153	
44	Pentyl propionate	-5.381	-5.181	-5.413	0.232	
45	Methyl butyrate	-1.559	-1.945	-1.508	-0.3//	
40	Ethyl butyrate	-1.559	-1.900	-1.508	-0.420	
47	Propyl butyrate	-2.875	-2.930 -4.423	-2.890 -4.152	-0.040	
40	Propyl butyrate	-4 127	-4 390	-4.152	-0.238	
50	Ethyl valerate	-4 127	-4.069	-4.152	0.083	
51	Dimethyl ether	1.509	1.772	1.518	0.254	
52	Isopropyl methyl ether	-0.563	-0.138	-0.566	0.428	
53	Isopropyl methyl ether	-0.563	-0.065	-0.566	0.501	
54	Diethyl ether	-1.119	-0.550	-1.126	0.576	
55	Diethyl ether	-1.119	-0.254	-1.126	0.872	
56	Methyl propyl ether	-1.059	-0.620	-1.065	0.445	
57	Methyl propyl ether	-1.059	-0.877	-1.065	0.188	
58	Ethyl isopropyl ether	-1.877	-1.291	-1.888	0.597	
59	Methyl isobutyl ether	-2.118	-2.071	-2.131	0.060	
60	Isopropyl propyl ether	-3.131	-3.086	-3.150	0.064	
61	Chloroethane	-2.912	-2.420	-2.930	0.510	
62	Chloropropane	-4.166	-3.516	-4.191	0.675	
63	2-Chloropropane	-3.670	-3.127	-3.692	0.565	
64	Chlorobutane	-5.420	-4.934	-5.453	0.519	
65	Isobutyl chloride	-5.225	-4.605	-5.256	0.651	
60	Bromoetnane	-3.112	-2.429	-3.131	0.702	
68	Bromobutane	-4.500	- 5.990	-4.392	0.402	
69	1 3-Dibromonronane	-4.136	-4 792	-3.054 -4.161	-0.631	
70	Iodoethane	-3 678	-3 684	-3 700	0.051	
71	Iodopropane	-4 932	-5 273	-4 962	-0.311	
72	Iodobutane	-6.186	-6.816	-6.223	-0.593	
73	Isobutane	-5.655	-5.867	-5.689	-0.178	
74	2-Methylbutane	-6.909	-7.322	-6.951	-0.371	
75	2,2-Dimethylbutane	-7.868	-8.45	-7.915	-0.535	
76	Methylcyclohexane	-8.583	-8.867	-8.635	-0.232	
77	Cyclooctane	-10.032	-9.560	-10.092	0.532	
78	n-Heptane	-9.612	-10.438	-9.670	-0.768	
79	2-Methylpentane	-8.163	-8.727	-8.212	-0.515	
80	2,2-Dimethylpentane	-9.122	-8.450	-9.177	0.727	
81	Cyclopentane	-6.270	-6.102	-6.308	0.206	
82	Methylcyclopentane	-7.329	-7.599	-7.373	-0.226	
83	1-Hexyne	-5.505	-5.434	-5.538	0.104	
84	1-Octyne	-8.013	-8.427	-8.061	-0.366	
85	1-Pentene	-6.028	-6.148	-6.064	-0.084	
86	2-Pentene	-5.912	-5.849	-5.948	0.099	
8/	I-Hexene	-7.282	-/.43/	-7.326	-0.111	
88	1-Octene	-9.790	-10.038	-9.849	-0./89	
89 00	1,0-Heptadiene	- /.400	-/.091	- /.505	-0.186	
90	Cyclohentenc	-0.332 7 586	-5.941	-0.3/0	0.429	
91 02	2 Butanana	- /.380	-1.2/0	-1.032	0.330	
<i>7∠</i> 03	2-Dutatione	-0.673	-0.280	0.384	0.9//	
95 0/	2-1 Cillanone	-0.673	-0.369	-0.077	0.200	
95	2-Hexanone	-1 927	-0.534 -1.794	-0.077	0.145	
96	2-Heptanone	-3.181	_3 274	_3 200	_0.074	
97	2-110ptatione 2.4-Dimethyl-3-pentanone	-2.791	_2 991	-2 808	-0.183	
<i>,</i> ,	2, - Dimethyr-5-pentanone	2.171	2.771	2.000	0.105	

^aFrom Ref. [8] and [53] ^bFrom Eq. 4 (using optimized correlation weights listed in Table 3)

 Table 3 Optimized correlation weights for different local invariants (obtained by the Monte Carlo optimization procedure)

Invariant type	local invariant	Optimized weight
a _k	Н	-0.140
	С	-0.345
	0	1.696
	S	-3.501
	Cl	-1.193
	Br	-1.393
	Ι	-1.959
NNC_k	0100	1.550
	0110	-0.193
	0211	0.714
	0220	0.237
	0301	-1.243
	0310	-0.259
	0312	-0.180
	0320	4.019
	0321	0.020
	0401	2.722
	0402	-0.039
	0403	1.132
	0412	1.156
	0413	-0.327
	0421	1.736
	0422	-0.243
	0430	3.046
	0431	0.036
	0440	0.415

coefficient between the ln S values of the training set and the molecular descriptor [DCW]) were found. Based on the optimized correlation weights, the molecular descriptor was finally defined and this was then used to derive all the relations with ln S values of both the training and test sets using the least squares method of regression.

$$\ln S = \alpha + \beta * DCW(a_k, LI_k)$$
(3)

The correlation weights were optimized using a PAS-CAL program developed by one of the authors (AAT). [54] Least squares linear regression analyses were performed using a GW-BASIC program *RRR98* developed by the other author (KR) [55]. The statistical quality of the equations [56] was judged by examining the parameters r_a^2 (adjusted r^2 , i.e., explained variance), r (correlation coefficient), F (variance ratio) with df (degree of freedom), s (standard error of estimate) and AVRES (average of absolute values of residuals). The significance of the regression coefficients was judged by the corresponding standard errors and 't' test. A compound was considered as an outlier for a particular equation when the residual exceeded twice the standard error of estimate of the equation. Predicted residual sum of squares (PRESS) statistics were calculated for the training set by the "leave-one-out" (LOO) technique [57, 58] using the programs KRPRES1 and KRPRES2 [55] and q^2 (cross-validation r^2 or predicted variance) along with SDEP (standard deviation of error of predictions) values were reported. The predictive capacity of the model was determined by applying it to the test set and the value of r_{pred}^2 was reported.

Results and discussion

The values of the optimized correlation weights of local invariants (a_k and NNC_k) are shown in Table 3. Based on the correlation weights as listed in Table 3, the molecular descriptors (DCW) were calculated for all the compounds as listed in Table 2. The calculation of the descriptor for methyl acetate is shown in Table 1.

The results of the relations of ln *S* values of different subsets of the training set with the molecular descriptor (DCW) are given in Table 4. It is observed that the descriptor could explain the variance of ln *S* values to the extent of 99.3% for alcohols (n=37), 98.1% for esters (n=16), 96.5% for ethers (n=6), 99.7% for halocarbons (n=8), 95.7% for hydrocarbons (n=22) and 99.6% for ketones (n=7). The average of the absolute values of the residuals is lowest for halocarbons (0.057) and highest for hydrocarbons (0.359). When all compounds of the training set (n=96) were considered (Table 4), the following relation was obtained:

$$\ln S = 1.006 * DCW(a, NNC) \tag{4}$$

The insignificant intercept in Eq. 4 was set to zero.

Table 4 Relations of water solubility ($\ln S$) of different subsets of the training set with the optimized molecular descriptor (DCW)^a

Type of compound	Regression coeffic	cient	Statistics			
	β (se)	α (se)	$r_a^2(r)$	$r^{2}(s)$	F (AVRES)	
alcohols $(n = 37)$ esters $(n = 16)$ ethers $(n = 6)$ Halocarbons $(n = 8)$ Hydrocarbons $(n = 22)$ Ketones $(n = 7)$ All ^d $(n = 96)$	$\begin{array}{c} 0.993 \ (0.010) \\ 0.903 \ (0.032) \\ 0.962 \ (0.047) \\ 1.002 \ (0.006) \\ 1.030 \ (0.013) \\ 1.083 \ (0.028) \\ 1.006 \ (0.007) \end{array}$	$^{-b}_{-0.435 (0.172)}$ $^{-b}_{-b}_{-b}_{-b}_{-b}_{0.191^{c} (0.078)}_{-b}$	$\begin{array}{c} 0.993 \ (0.996) \\ 0.981 \ (0.991) \\ 0.965 \ (0.982) \\ 0.997 \ (0.999) \\ 0.957 \ (0.978) \\ 0.996 \ (0.998) \\ 0.987 \ (0.994) \end{array}$	$\begin{array}{c} 0.993 \ (0.320) \\ 0.983 \ (0.371) \\ 0.965 \ (0.381) \\ 0.997 \ (0.084) \\ 0.957 \ (0.473) \\ 0.997 \ (0.114) \\ 0.987 \ (0.380) \end{array}$	10187.5 (0.242) 794.2 (0.279) 417.8 (0.240) 24231.4 (0.057) 6385.0 (0.359) 1513.0 (0.076) 22062 6 (0.284)	

^aModel Equation: ln $S = \alpha + \beta^* DCW$ (a, NNC)

^bIntercept set to zero

Significant at 90% level

^dLeave-one-out cross-validation statistics: $q^2 = 0.987$, SDEP = 0.386

Table 5 Relations of water solubility (ln S) of different subsets of the test set with the optimized molecular descriptor (DCW)^a

Type of compound	Regression coeffic	cient	Statistics				
	β (se)	α (se)	$r_{\rm a}^2(r)$	$r^2(s)$	F (AVRES)		
alcohols $(n=23)$	0.973 (0.018)	_b	0.981 (0.990)	0.981 (0.239)	2904.1 (0.201)		
esters $(n=27)$	1.024 (0.016)	_b	0.986 (0.993)	0.986 (0.206)	4066.0 (0.164)		
ethers $(n=10)$	1.047 (0.074)	0.445 (0.118)	0.957 (0.981)	0.962 (0.269)	199.8 (0.203)		
Halocarbons $(n=12)$	0.966 (0.032)	_b	0.847 (0.920)	0.847 (0.511)	890.9 (0.430)		
Hydrocarbons $(n = 19)$	1.021 (0.013)	_b	0.928 (0.963)	0.928 (0.419)	6628.4 (0.327)		
Ketones $(n=6)$	1.259 (0.065)	0.581 (0.128)	0.987 (0.995)	0.989 (0.210)	370.8 (0.150)		
All ^c $(n=97)$	1.041 (0.013)	0.193 (0.054)	0.986 (0.993)	0.986 (0.342)	6715.7 (0.274)		

^aModel Equation: ln $S = \alpha + \beta * DCW$ (a, NNC)

^bIntercept set to zero

^cPrediction statistics: $r_{\text{pred}}^2 = 0.988$

From Table 4, it can be observed that the above equation could predict and explain 98.7% of the variance of the ln *S* values of the training set. Out of 96 compounds, 1,1-diethylpentanol, isopropyl butyrate, ethyl decanoate, ethyl propyl ether, 2,4-dimethylpentane and *n*-octane acted as outliers in the case of modeling of all compounds (training set) with the molecular descriptor. Equation 4 was applied to the compounds of the training set and test set to calculate the ln *S* values as shown in Table 2.

The results of relations of ln S values of different subsets of the test set with the molecular descriptor (DCW) are given in Table 5. It is observed that the descriptor could explain the variance of ln S values to the extent of 98.1% for alcohols (n=23), 98.6% for esters (n=27), 95.7% for ethers (n=10), 84.7% for halocarbons (n=12), 92.8% for hydrocarbons (n=19)and 98.7% for ketones (n=6). The average of the absolute values of the residuals is highest for halocarbons (0.430) and lowest for ketones (0.150). When all compounds of the test set (n=97) were considered (Table 5), the molecular descriptor could explain 98.6% of the variance. Out of 97 compounds, diethyl ether, cyclooctane, 2,2-dimethylpentane and 2-butanone acted as outliers while modeling all compounds (test set) with the molecular descriptor. When Eq. 4 was used to predict the ln S values of the compounds of the test set (Table 2), the r_{pred}^2 value was found to be 0.988 (Table 5).

The results of relations of ln S values of different subsets of the combined set with the molecular descriptor (DCW) are given in Table 6. It is observed that the descriptor could explain the variance of ln S values to the extent of 99.2% for alcohols (n=60), 98.5% for esters (n=43), 97.5% for ethers (n=16), 92.0% for halocarbons (n=20), 94.8% for hydrocarbons (n=41) and 98.8% for ketones (n = 13). The average of the absolute values of the residuals was lowest for ketones (0.132)and highest for hydrocarbons (0.344). When all compounds of the combined sets (n=193) were considered (Table 6), the molecular descriptor could explain 98.7% of the variance. Out of 193 compounds, 1,1-diethylpentanol, *n*-hexanol, isopropyl butyrate, ethyl decanoate, ethyl propyl ether, 2,4-dimethylpentane, 2,2,4trimethylpentane, cycloheptane, *n*-octane, diethyl ether, 2,2-dimethylpentane and 2-butanone acted as outliers in case of modeling of all compounds (combined set) with the molecular descriptor.

The same data set was modeled previously [46] using molecular connectivity $({}^{1}\chi^{v})$, molecular negentropy and TAU indices. The statistical quality of the QSPR relation obtained in the present paper considering all the compounds (n=193) is better than the relations obtained previously [46].

The present analysis shows that the optimization of correlation weights scheme can generate statistically acceptable models for water solubility of diverse functional aliphatic compounds. Moreover, the scheme does

Table 6 Relations of water solubility (ln S) of different subsets of the combined set with the optimized molecular descriptor (DCW)^a

Type of compound	Regression coefficient		Statistics				
	β (se)	α (se)	$r_{\rm a}^2(r)$	r^2 (s)	F (AVRES)		
alcohols $(n=60)$	0.991 (0.008)	_b	0.992 (0.996)	0.992 (0.291)	14257.1 (0.229)		
esters $(n=43)$	0.954 (0.018)	-0.160(0.069)	0.985 (0.993)	0.985 (0.303)	2779.6 (0.229)		
ethers $(n=16)$	1.066 (0.044)	0.435 (0.105)	0.975 (0.988)	0.977 (0.285)	588.4 (0.227)		
Halocarbons $(n=20)$	0.981 (0.020)	_b	0.920 (0.959)	0.920 (0.401)	2519.7 (0.306)		
Hydrocarbons $(n=41)$	1.026 (0.009)	_b	0.948 (0.974)	0.948 (0.445)	13114.7 (0.344)		
Ketones $(n=13)$	1.157 (0.037)	0.398 (0.092)	0.988 (0.994)	0.989 (0.203)	961.3 (0.132)		
All ^c $(n=193)$	1.025 (0.008)	0.121 (0.042)	0.987 (0.994)	0.987 (0.364)	14879.2 (0.277)		

^aModel Equation: ln $S = \alpha + \beta^*$ DCW (a, NNC)

^bIntercept set to zero

not require complex calculation of diverse descriptors and statistical analysis for proper selection of descriptors and intercorrelation among them. Furthermore, as each 'elementary' molecular fragment has been provided with a 'personal' numerical local descriptor, one can identify vertices that increase/decrease the property under analysis. Thus, the scheme merits further assessment on exploring QSPR/QSAR of different physicochemical properties/biological activity data using different local invariants to justify its suitability in modeling studies. Furthermore, the present study shows the successful use of nearest neighboring codes as useful local invariants in the optimization of correlation weights scheme, which warrants extensive evaluation.

References

- 1. Harary F (1971) Graph theory. Addison-Wesley, Reading, MA
- 2. Balaban AT (ed) (1976) Chemical application of graph theory. Academic Press, London
- 3. Trinajstic N (1992) Chemical graph theory, 2nd edn. CRC Press, Boca Raton
- 4. Devillers J, Balaban AT (eds) (1999) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach Science Publishers, The Netherlands
- Ivanciuc O (1998) Structural similarity measures for database searching. In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, Schniener PR (eds) Encyclopedia of computational chemistry. Wiley, Chichester
- 6. Boncher D, Rouvray DH (eds) (1991) Chemical graph theory. Introduction and Fundamentals. Academic Press, New York
- 7. Balaban AT (ed) (1997) From chemical topology to threedimensional geometry. NewYork
- 8. Kier LB, Hall LH (1976) Molecular connectivity in chemistry and drug research. Academic Press, New York
- 9. Kier LB, Hall LH (1986) Molecular connectivity in structureactivity analysis. Research Studies Press, Letchworth
- 10. Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, Weinheim, Germany
- 11. Kier LB (1989) Quant Struct-Act Relat 8:218-223
- 12. Randic M (1991) J Comput Chem 12:970-980
- 13. Randic M (1991) Chemom Intell Lab Syst 10:213-227
- 14. Randic M (1991) J Chem Inf Comput Sci 31:311-320
- 15. Randic M (1992) J Chem Inf Comput Sci 32:686-692
- 16. Estrada E (1995) J Chem Inf Comput Sci 35:1022-1025
- Amic D, Beslo D, Lucic D, Nikolic S, Trinajstic N (1998) J Chem Inf Comput Sci 38:819–822
- Randic M, Basak SC (1999) J Chem Inf Comput Sci 39:261– 266
- Sinha DK, Basak SC, Mohanty RK, Basumallick IN (1999) Some aspects in mathematical chemistry. Visva-Bharati University Press, Santiniketan
- 20. Toropov AA, Toropova AP (1998) Russ J Coord Chem 24:81-85
- Toropov AA, Toropova AP, Voropaeva NL, Ruban IN, Rashidova SS (1998) J Coord Chem 24:525–529
- Toropov AA, Voropaeva NL, Ruban IN, Rashidova SS (1999) Polym Sci Ser A 41:975–985
- Krenkel G, Castro EA, Toropov AA (2001) J Mol Struct (THEOCHEM) 542:107–113
- 24. Mercader A, Castro EA, Toropov AA (2001) J Mol Model 7:1–5
- 25. Mercader A, Castro EA, Toropov AA (2000) Chem Phys Lett 330:612–623

- Krenkel G, Castro EA, Toropov AA (2001) J Mol Sci 2:57–65, http://www.mdpi.org/ijms
- Marino DJG, Perruzo PJ, Castro EA, Toropov AA (2002) Internet Electron J Mol Des 1:115–133, http://www.biochempress.com
- Duchowicz P, Castro EA, Toropov AA (2002) Computers and Chemistry 26:327–332
- Toropov AA, Duchowicz P, Castro EA (2003) Int J Mol Sci 4:272–283, http://www.mdpi.org/ijms
- Perruzo PJ, Marino DJG, Castro EA, Toropov AA (2003) Internet Electron J Mol Des 2:334–347, http://www.biochempress.com
- Toropov AA, Schultz TW (2003) J Chem Inf Comput Sci 43:560–567
- 32. Toropov AA, Roy K (2004) J Chem Inf Comput Sci 44:179-186
- 33. Kubinyi H (1995) Quantitative structure-activity relationships. In: Wolff ME (ed) Burger's medicinal chemistry and drug discovery, 5th edn, vol 1. John Wiley New York, pp 497–571
- 34. Ghose AK, Crippen GM (1987) J Chem Inf Comput Sci 27:21–35
- 35. Ghose AK, Viswanadhan VN, Wendoloski JJ (1998) J Phys Chem 102:3762-3772
- Bodor N, Gabanyi Z, Wong C-K (1989) J Am Chem Soc 111:3783–3786
- 37. Klopman G, Wang S (1991) J Comput Chem 12:1025-1032
- Moriguchi I, Hirono S, Liu Q, Nakagome I, Matsushita Y (1992) Chem Pharm Bull (Tokyo) 40:127–130
- 39. Saxena AK (1995) Quant Struct-Act Relat 14:142-150
- 40. Benet LZ, Kroetz DL, Sheiner LB (1996) In: Hardman JG, Limbard LE, Molinoff PB, Ruddon RW, Goodman Gilman A (eds) Goodman and Gilman's The pharmacological basis of therapeutics. Mc-Graw Hill, New York, pp 3–27
- 41. Ferreira MM (2001) Chemosphere 44:125-146
- 42. Khadikar PV, Mandloi F, Bajaj AV, Joshi S (2003) Bioorg Med Chem Lett 13:419–422
- Katritzky AR, Wang Y, Sild S, Tamm T (1998) J Chem Inf Comput Sci 38:720–725
- 44. Yin Č, Liu X, Guo W, Lin T, Wang X, Wang L (2002) Water Res 36:2975–2982
- 45. Chen XQ, Cho SJ, Li Y, Venkatesh S (2002) J Pharm Sci 91:1838–1852
- Roy K, Saha A (2003) Internet Electron J Mol Des 2:475–491, http://www.biochempress.com
- Yang F, Wang ZD Huang YP (2004) J Comput Chem 25:881– 887
- Wanchana S, Yamashita F, Hashida M (2002) Pharmazie 57:127–129
- Gao H, Shanmugasundaram V, Lee P (2002) Pharm Res 19:497–503
- Puri S, Chickos JS, Welsh WJ (2003) J Chem Inf Comput Sci 43:55–62
- 51. Liu R, So SS (2001) J Chem Inf Comput Sci 41:1633-1639
- 52. Butina D, Gola JM (2003) 43:837-841
- 53. Hansch C, Quinlan JE, Lawrence GL (1968) J Org Chem 33:347–350
- 54. The program for optimization of correlation weights was developed in PASCAL by Toropov AA
- 55. The GW-BASIC programs *RRR98*, *KRPRES1* and *KRPRES2* were developed by Kunal Roy (1998) and standardized using known data sets.
- Snedecor GW, Cochran WG (1967) Statistical Methods. Oxford& IBH Publishing Co. Pvt. Ltd., New Delhi, pp 381–418
- 57. Kier LB, Hall LH (1992) Atom description in QSAR models: development and use of an atom level index. In: Testa B (ed) Advances in drug research, vol 22. Academic Press, New York, pp 1–38
- Wold S, Eriksson L (1995) Validation tools. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, Weinheim, pp 309–318