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Abstract The optimization of correlation weights scheme
was used to model the water solubility (ln S) of diverse
functional aliphatic compounds (n=193). The optimized
descriptor formulated based on the data of a training set
(n=96) generated statistically acceptable relations for
the training set (r2=0.987), test set (n=97; r2=0.986)
and combined set (r2=0.987). When the relation of ln S
values with the optimized molecular descriptor formu-
lated based on the data of the training set was used for
the calculation of ln S values of the training set,
rpred
2 value was found to be satisfactory (0.988), which is
indicative of the predictive potential of the scheme. The
results indicate the promising potential of the optimi-
zation of correlation weights scheme in modeling
studies.

Keywords QSAR Æ QSPR Æ Optimization of correlation
weights Æ Flexible descriptors Æ Nearest neighbouring
codes Æ Water solubility

Introduction

Numerical representation of chemical structure and its
relation with property or biological activity have lead to
the fascinating fields of quantitative structure-activity/
property/toxicity relationship (QSAR/QSPR/QSTR)

studies. Among the different descriptors available,
topological ones, formulated by graph theoretic ap-
proaches, [1–3] have been used extensively in modeling
studies because of their ease of computation and low
computational requirements [4–11]. Topological de-
scriptors consider the arrangements of atoms in the
(mostly hydrogen-suppressed) molecular graph, inter-
atomic distance, kind of atoms, branching and cyclicity.

A huge number of topological descriptors are cur-
rently available for modeling studies. Although many
such descriptors are highly intercorrelated, a large
amount of chemical information can be decoded by the
use of an appropriate combination of useful descriptors.
Selection of appropriate descriptors from the plethora of
available descriptors is a real problem in modeling
studies. One has to take care that descriptors are chosen
to extract the maximum amount of chemical informa-
tion and, at the same time, the descriptors used in a
multiple regression equation should not be inter-corre-
lated. The concept of flexible topological descriptors,
originally introduced by Randic, [12–14] is a major
breakthrough in this regard as the difficulties of multiple
regression are not present in such an approach. Flexible
topological descriptors do not have a definite predeter-
mined formalism, that can be applied to any sets of
compounds for modeling biological activity or physi-
cochemical properties. The formalism of such descrip-
tors is defined based on an optimization procedure to
obtain the best relation for a particular data set. Thus,
the definition of the descriptors will vary from one data
set to another and the ultimate objective of the iterative
optimization procedure is to obtain the best predictive
model. Several descriptors have been proposed in this
line and their use has also been explored [15–22]. Among
these descriptors, an interesting sort of flexible descrip-
tors is based on the optimized correlation weights of the
local graph invariants [19–21]. This scheme has been
used successfully to model different sets of biological
activity and physicochemical property data [23–32].

Like partition coefficient parameter in the n-octa-
nol—water system, [33–39] water solubility is another
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very important physicochemical parameter that can
account for many properties of organic chemicals
including the biopharmaceutical behavior of drugs [40].
Many attempts have been made to model water solu-
bility using different indices, e.g., the Wiener and
connectivity indices, [41] the PI index, [42] quantum
chemical descriptors, [43, 44] dipole moment, surface
area, volume, molecular weight, number of hydrogen
bond acceptor/donor(s) and number of rotable bonds,
[45] the TAU index, [46] the modified Wiener index,
[47] etc., and different statistical and QSAR methods,
e.g., genetic algorithm and partial least squares, [48]
principal component analysis, [49] comparative molec-
ular field analysis, [50] artificial neural network, [51]
SIMCA, [52] etc.

In the present communication, we have applied the
optimization of correlation weights scheme for modeling
water solubility of diverse functional aliphatic com-
pounds to show the usefulness of the scheme. Although
mostly straight chain aliphatic compounds have been
considered, the data set also contains a few alicyclic
compounds.

Materials and methods

The molecular descriptor used in the present modeling
studies was calculated based on the labelled hydrogen
filled graph (LHFG) in the following manner:

DCWðak;LIkÞ ¼
Xn

k¼1
CWðakÞ þ

Xn

k¼1
CWðLIkÞ: ð1Þ

In the above equation, the DCW term represents the
molecular descriptor, the CW terms represent the cor-
relation weights, ak is the chemical element of the kth
vertex of the LHFG and LIk is the numerical value of a
local invariant of the LHFG. As local invariants, we
have used nearest neighboring codes (NNC). [32] The
NNC of the kth vertex of the LHFG is calculated as

NNCk ¼ 100NT þ 10NC þ NH: ð2Þ

In the above equation, NT, NC and NH represent the
total number of vertices, number of carbons and number
of hydrogens, respectively, connected to the kth vertex.
An example of the calculation of NNC for methyl ace-
tate is shown in Table 1. NNC is a mathematical func-
tion of both the number and kind of neighbors for an
atom.

The descriptor (DCW), as defined in Eq. 1, is ob-
tained from special correlation weights of local graph
invariants, which are obtained by a Monte Carlo opti-
mization procedure. The aim of this optimization pro-
cedure is to make the correlation coefficient between the
property/activity of the training set under consideration
and the descriptor (DCW) as large as possible. The
predictive ability of the model should be validated using
a test set.

The water solubility (ln S) values of diverse func-
tional aliphatic compounds (n=193) were taken from
the literature. [8, 53] The data set was divided into a
training set and a test set, as listed in Table 2. The
starting value of each correlation weight was 1 and using
a Monte Carlo iterative optimization procedure, [20, 21,
22] the best values of correlation weights [CW(ak) and
CW(LIk)] (which give largest possible correlation

Table 1 Example of the calculation the DCW value of methyl acetate based on the CWs listed in Table 3 [the adjacency matrix of methyl
acetate is also shown]
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Atom (ak) O1 C2 O3 C4 H5 H6 H7 C8 H9 H10 H11

O1 0 1 0 0 0 0 0 1 0 0 0
C2 1 0 1 1 0 0 0 0 0 0 0
O3 0 1 0 0 0 0 0 0 0 0 0
C4 0 1 0 0 1 1 1 0 0 0 0
H5 0 0 0 1 0 0 0 0 0 0 0
H6 0 0 0 1 0 0 0 0 0 0 0
H7 0 0 0 1 0 0 0 0 0 0 0
C8 1 0 0 0 0 0 0 0 1 1 1
H9 0 0 0 0 0 0 0 1 0 0 0
H10 0 0 0 0 0 0 0 1 0 0 0
H11 0 0 0 0 0 0 0 1 0 0 0
Values of NNCk 220 310 110 413 110 110 110 403 110 110 110
CW(Atom) 1.696 �0.345 1.696 �0.345 �0.140 �0.140 �0.140 �0.345 �0.140 �0.140 �0.140
CW(NNCk) 0.237 �0.259 �0.193 �0.327 �0.193 �0.193 �0.193 1.132 �0.193 �0.193 �0.193
CW(ak) + CW(NNCk) 1.933 �0.604 1.503 �0.672 �0.333 �0.333 �0.333 0.787 �0.333 �0.333 �0.333
DCW DCWðak ;NNCkÞ ¼

P
CWðakÞ þ

P
CWðNNCkÞ ¼ 0:949
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Table 2 Optimized molecular descriptor and observed and calculated ln S values of diverse functional aliphatic compounds

Sl. no. Compound name Molecular
Descriptor (DCW)

Water solubility (ln S)

Obs.a Calc.b Res.

Training set
1 n-Butanol �0.214 0.006 �0.215 0.221
2 2-butanol 0.282 0.066 0.284 �0.218
3 3-methylbutanol �1.273 �1.167 �1.281 0.114
4 2-pentanol �0.972 �0.635 �0.978 0.343
5 3-methyl-2-butanol �0.777 �0.405 �0.782 0.377
6 2-Methyl-2-butanol 0.254 0.339 0.256 0.083
7 2-Hexanol �2.226 �1.995 �2.239 0.244
8 3-Methyl-3-pentanol �1.000 �0.830 �1.006 0.176
9 2-Methyl-3-pentanol �2.031 �1.609 �2.043 0.434
10 2,3-Dimethyl-2-butanol �0.805 �0.851 �0.810 �0.041
11 3,3-Dimethyl-1-butanol �2.232 �2.590 �2.245 �0.345
12 3,3-Dimethyl-2-butanol �1.736 �1.410 �1.746 0.336
13 2-Ethylbutanol �2.527 �2.787 �2.542 �0.245
14 n-Hepatnol �3.976 �4.166 �4.00 �0.166
15 3-Methyl-3-hexanol �2.254 �2.263 �2.268 0.005
16 3-Ethyl-3-pentanol �2.254 �1.917 �2.268 0.351
17 2,3-Dimethyl-3-pentanol �2.059 �1.937 �2.071 0.134
18 2,4-Dimethyl-3-pentanol �3.090 �2.801 �3.109 0.308
19 4-Heptanol �3.480 �3.196 �3.501 0.305
20 n-Octanol �5.230 �5.401 �5.262 �0.139
21 2,2,3-Trimethyl-3-pentanol �3.018 �2.931 �3.036 0.105
22 2-Octanol �4.734 �4.755 �4.763 0.008
23 2-Ethylhexanol �5.035 �4.996 �5.065 0.069
24 n-Nonanol �6.484 �6.907 �6.523 �0.384
25 2-Nonanol �5.988 �6.319 �6.024 �0.295
26 4-Nonanol �5.988 �5.952 �6.024 0.072
27 3,5-Dimethyl-4-heptanol �5.598 �5.298 �5.632 0.334
28 1,1-Diethyl-pentanol �4.762 �5.572 �4.791 �0.781
29 7-Methyloctanol �6.289 �5.744 �6.327 0.583
30 3,5,5-Trimethylhexanol �5.799 �5.769 �5.834 0.065
31 n-Decanol �7.738 �8.517 �7.785 �0.732
32 n-Tetradecanol �12.754 �12.772 �12.831 0.059
33 n-Pentadecanol �14.008 �13.796 �14.092 0.296
34 n-Hexanol �15.262 �14.603 �15.354 0.751
35 2,2-Dimethylpropanol �0.978 �0.889 �0.984 0.095
36 1-penten-3-ol 0.104 0.035 0.105 �0.070
37 2-Hexen-4-ol �1.034 �0.939 �1.040 0.101
38 Methyl formate 1.303 1.015 1.311 �0.296
39 Propyl formate �1.265 �1.133 �1.273 0.140
40 Butyl formate �2.519 �2.303 �2.534 0.231
41 Isobutyl acetate �2.678 �2.849 �2.694 �0.155
42 Butyl acetate �2.873 �3.154 �2.890 �0.264
43 Isopentyl acetate �3.932 �4.398 �3.956 �0.442
44 Pentyl acetate �4.127 �4.283 �4.152 �0.131
45 Hexyl acetate �5.381 �4.721 �5.413 0.692
46 Isopropyl propionate �2.377 �2.970 �2.391 �0.579
47 Isopentyl propionate �5.186 �5.088 �5.217 0.129
48 Isopropyl butyrate �3.631 �4.465 �3.653 �0.812
49 Ethyl heptanoate �6.635 �6.303 �6.675 0.372
50 Ethyl hexanoate �5.381 �5.425 �5.413 �0.012
51 Ethyl octanoate �7.889 �7.799 �7.937 0.138
52 Ethyl nanoate �9.143 �8.741 �9.198 0.457
53 Ethyl decanoate �10.397 �9.434 �10.460 1.026
54 Methyl sec-butyl ether �1.817 �1.704 �1.828 0.124
55 Butyl methyl ether �2.313 �2.303 �2.327 0.024
56 Dipropyl ether �3.627 �3.364 �3.649 0.285
57 Dibutyl ether �6.135 �6.261 �6.172 �0.089
58 Methyl t-butyl ether �0.591 �0.484 �0.595 0.111
59 Ethyl propyl ether �2.373 �1.531 �2.387 0.856
60 1,3-Dichloropropane �3.736 �3.716 �3.759 0.043
61 Chloroform �2.114 �2.118 �2.127 0.009
62 2-Bromopropane �3.870 �3.756 �3.893 0.137
63 Isobutyl bromide �5.425 �5.600 �5.458 �0.142
64 Isoamyl bromide �6.679 �6.645 �6.719 0.074
65 Iodomethane �2.364 �2.303 �2.378 0.075
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Table 2 (Contd.)

Sl. no. Compound name Molecular
Descriptor (DCW)

Water solubility (ln S)

Obs.a Calc.b Res.

66 Diiodomethane �5.354 �5.388 �5.386 �0.002
67 Dichloroethsulfide �5.456 �5.457 �5.489 0.032
68 n-Butane �5.850 �6.020 �5.885 �0.135
69 n-Pentane �7.104 �7.530 �7.147 �0.383
70 2,2-Dimethylpropane �6.614 �7.198 �6.654 �0.544
71 2,4-Dimethylpentane �9.222 �10.109 �9.278 �0.831
72 2,2,4-Trimethylpentane �10.181 �9.501 �10.242 0.741
73 2,2,5-Trimethylhexane �11.435 �11.624 �11.504 �0.120
74 Cyclohexane �7.524 �7.322 �7.569 0.247
75 1,2-Dimethylcyclohexane �9.642 �9.830 �9.700 �0.130
76 Cycloheptane �8.778 �8.095 �8.831 0.736
77 n-Hexane �8.358 �9.106 �8.408 �0.698
78 n-Octane �10.866 �12.059 �10.931 �1.128
79 3-Methylpentane �8.163 �8.819 �8.212 �0.607
80 1-Pentyne �4.251 �3.707 �4.277 0.570
81 1-Heptyne �6.759 �6.931 �6.800 �0.131
82 1-Nonanyne �9.267 �9.694 �9.323 �0.371
83 1,8-Nonadiyne �6.414 �6.862 �6.453 �0.409
84 1,6-Heptadiyne �3.906 �4.030 �3.930 �0.100
85 2-Heptene �8.420 �8.796 �8.471 �0.325
86 4-Methyl-1-pentene �7.087 �7.460 �7.130 �0.330
87 1,5-Hexadiene �6.206 �6.194 �6.243 0.049
88 1,4-Pentadiene �4.952 �4.789 �4.982 0.193
89 Cyclopentene �5.078 �4.835 �5.109 0.274
90 3-Methyl-2-butanone �0.478 �0.286 �0.481 0.195
91 3-Hexanone �1.927 �1.904 �1.939 0.035
92 3-Methyl-2-pentanone �1.732 �1.545 �1.742 0.197
93 4-Methyl-2-pentanone �1.732 �1.637 �1.742 0.105
94 4-Methyl-3-pentanone �1.732 �1.870 �1.742 �0.128
95 4-Heptanone �3.181 �3.325 �3.200 �0.125
96 5-Nonanone �5.689 �5.929 �5.723 �0.206
Test set
1 2-methylpropanol �0.019 0.023 �0.019 0.042
2 n-Pentanol �1.468 �1.347 �1.477 0.130
3 2-Methylbutanol �1.273 �1.058 �1.281 0.223
4 3-pentanol �0.972 �0.486 �0.978 0.492
5 n-Hexanol �2.722 �2.790 �2.738 �0.052
6 3-Hexanol �2.226 �1.832 �2.239 0.407
7 2-Methyl-2-pentanol �1.000 �1.117 �1.006 �0.111
8 3-Methyl-2-pentanol �2.031 �1.639 �2.043 0.404
9 4-Methylpentanol �2.527 �2.282 �2.542 0.260
10 4-Methyl-2-pentanol �2.031 �1.814 �2.043 0.229
11 Cyclohexanol �1.392 �0.960 �1.400 0.440
12 2-Methyl-2-hexanol �2.254 �2.473 �2.268 �0.205
13 2,3-Dimethyl-2-pentanol �2.059 �2.002 �2.071 0.069
14 2,4-Dimethyl-2-pentanol �2.059 �2.145 �2.071 �0.074
15 2,2-Dimethyl-3-pentanol �2.990 �2.643 �3.008 0.365
16 3-Heptanol �3.480 �3.194 �3.501 0.307
17 3-Nonanol �5.988 �6.119 �6.024 �0.095
18 5-Nonanol �5.988 �5.744 �6.024 0.280
19 2,6-Dimethyl-3-heptanol �5.598 �5.776 �5.632 �0.144
20 4-Penten-1-ol �0.392 �0.355 �0.394 0.039
21 3-Penten-2-ol 0.220 0.127 0.221 �0.094
22 1-Hexen-3-ol �1.150 �1.354 �1.157 �0.197
23 2-Methyl-4-penten-3-ol �0.955 �1.156 �0.961 �0.195
24 Ethyl formate �0.011 0.174 �0.011 0.185
25 Ethyl formate �0.011 �0.345 �0.011 �0.334
26 Propyl formate �1.265 �1.174 �1.273 0.099
27 Butyl formate �2.519 �2.733 �2.534 �0.199
28 1-Pentyl formate �3.773 �3.500 �3.796 0.296
29 Methyl acetate 0.949 1.191 0.955 0.236
30 Methyl acetate 0.949 0.924 0.955 �0.031
31 Ethyl acetate �0.365 �0.092 �0.367 0.275
32 Ethyl acetate �0.365 �0.069 �0.367 0.298
33 Isopropyl acetate �1.123 �1.194 �1.130 �0.064
34 Isopropyl acetate �1.123 �1.245 �1.130 �0.115
35 Propyl acetate �1.619 �1.704 �1.629 �0.075
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Table 2 (Contd.)

Sl. no. Compound name Molecular
Descriptor (DCW)

Water solubility (ln S)

Obs.a Calc.b Res.

36 Propyl acetate �1.619 �1.726 �1.629 �0.097
37 Methyl propionate �0.305 �0.345 �0.307 �0.038
38 Methyl propionate �0.305 �0.390 �0.307 �0.083
39 Ethyl propionate �1.619 �1.474 �1.629 0.155
40 Ethyl propionate �1.619 �1.666 �1.629 �0.037
41 Propyl propionate �2.873 �3.086 �2.890 �0.196
42 Propyl propionate �2.873 �2.992 �2.890 �0.102
43 Butyl propionate �4.127 �4.305 �4.152 �0.153
44 Pentyl propionate �5.381 �5.181 �5.413 0.232
45 Methyl butyrate �1.559 �1.945 �1.568 �0.377
46 Methyl butyrate �1.559 �1.988 �1.568 �0.420
47 Ethyl butyrate �2.873 �2.936 �2.890 �0.046
48 Propyl butyrate �4.127 �4.423 �4.152 �0.271
49 Propyl butyrate �4.127 �4.390 �4.152 �0.238
50 Ethyl valerate �4.127 �4.069 �4.152 0.083
51 Dimethyl ether 1.509 1.772 1.518 0.254
52 Isopropyl methyl ether �0.563 �0.138 �0.566 0.428
53 Isopropyl methyl ether �0.563 �0.065 �0.566 0.501
54 Diethyl ether �1.119 �0.550 �1.126 0.576
55 Diethyl ether �1.119 �0.254 �1.126 0.872
56 Methyl propyl ether �1.059 �0.620 �1.065 0.445
57 Methyl propyl ether �1.059 �0.877 �1.065 0.188
58 Ethyl isopropyl ether �1.877 �1.291 �1.888 0.597
59 Methyl isobutyl ether �2.118 �2.071 �2.131 0.060
60 Isopropyl propyl ether �3.131 �3.086 �3.150 0.064
61 Chloroethane �2.912 �2.420 �2.930 0.510
62 Chloropropane �4.166 �3.516 �4.191 0.675
63 2-Chloropropane �3.670 �3.127 �3.692 0.565
64 Chlorobutane �5.420 �4.934 �5.453 0.519
65 Isobutyl chloride �5.225 �4.605 �5.256 0.651
66 Bromoethane �3.112 �2.429 �3.131 0.702
67 Bromopropane �4.366 �3.990 �4.392 0.402
68 Bromobutane �5.620 �5.448 �5.654 0.206
69 1,3-Dibromopropane �4.136 �4.792 �4.161 �0.631
70 Iodoethane �3.678 �3.684 �3.700 0.016
71 Iodopropane �4.932 �5.273 �4.962 �0.311
72 Iodobutane �6.186 �6.816 �6.223 �0.593
73 Isobutane �5.655 �5.867 �5.689 �0.178
74 2-Methylbutane �6.909 �7.322 �6.951 �0.371
75 2,2-Dimethylbutane �7.868 �8.45 �7.915 �0.535
76 Methylcyclohexane �8.583 �8.867 �8.635 �0.232
77 Cyclooctane �10.032 �9.560 �10.092 0.532
78 n-Heptane �9.612 �10.438 �9.670 �0.768
79 2-Methylpentane �8.163 �8.727 �8.212 �0.515
80 2,2-Dimethylpentane �9.122 �8.450 �9.177 0.727
81 Cyclopentane �6.270 �6.102 �6.308 0.206
82 Methylcyclopentane �7.329 �7.599 �7.373 �0.226
83 1-Hexyne �5.505 �5.434 �5.538 0.104
84 1-Octyne �8.013 �8.427 �8.061 �0.366
85 1-Pentene �6.028 �6.148 �6.064 �0.084
86 2-Pentene �5.912 �5.849 �5.948 0.099
87 1-Hexene �7.282 �7.437 �7.326 �0.111
88 1-Octene �9.790 �10.638 �9.849 �0.789
89 1,6-Heptadiene �7.460 �7.691 �7.505 �0.186
90 Cyclohexene �6.332 �5.941 �6.370 0.429
91 Cycloheptene �7.586 �7.276 �7.632 0.356
92 2-Butanone 0.581 1.561 0.584 0.977
93 2-Pentanone �0.673 �0.389 �0.677 0.288
94 3-Pentanone �0.673 �0.534 �0.677 0.143
95 2-Hexanone �1.927 �1.794 �1.939 0.145
96 2-Heptanone �3.181 �3.274 �3.200 �0.074
97 2,4-Dimethyl-3-pentanone �2.791 �2.991 �2.808 �0.183
aFrom Ref. [8] and [53]
bFrom Eq. 4 (using optimized correlation weights listed in Table 3)
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coefficient between the ln S values of the training set and
the molecular descriptor [DCW]) were found. Based on
the optimized correlation weights, the molecular
descriptor was finally defined and this was then used to
derive all the relations with ln S values of both the
training and test sets using the least squares method of
regression.

ln S ¼ aþ b �DCWðak;LIkÞ ð3Þ

The correlation weights were optimized using a PAS-
CAL program developed by one of the authors (AAT).
[54] Least squares linear regression analyses were per-
formed using a GW-BASIC program RRR98 developed
by the other author (KR) [55]. The statistical quality of
the equations [56] was judged by examining the param-

eters ra
2 (adjusted r2, i.e., explained variance), r (corre-

lation coefficient), F (variance ratio) with df (degree of
freedom), s (standard error of estimate) and AVRES
(average of absolute values of residuals). The signifi-
cance of the regression coefficients was judged by the
corresponding standard errors and ‘t’ test. A compound
was considered as an outlier for a particular equation
when the residual exceeded twice the standard error of
estimate of the equation. Predicted residual sum of
squares (PRESS) statistics were calculated for the
training set by the ‘‘leave-one-out’’ (LOO) technique [57,
58] using the programs KRPRES1 and KRPRES2 [55]
and q2 (cross-validation r2 or predicted variance) along
with SDEP (standard deviation of error of predictions)
values were reported. The predictive capacity of the
model was determined by applying it to the test set and
the value of rpred

2 was reported.

Results and discussion

The values of the optimized correlation weights of local
invariants (ak and NNCk) are shown in Table 3. Based
on the correlation weights as listed in Table 3, the
molecular descriptors (DCW) were calculated for all the
compounds as listed in Table 2. The calculation of the
descriptor for methyl acetate is shown in Table 1.

The results of the relations of ln S values of different
subsets of the training set with the molecular descriptor
(DCW) are given in Table 4. It is observed that the
descriptor could explain the variance of ln S values to
the extent of 99.3% for alcohols (n=37), 98.1% for es-
ters (n=16), 96.5% for ethers (n=6), 99.7% for halo-
carbons (n=8), 95.7% for hydrocarbons (n=22) and
99.6% for ketones (n=7). The average of the absolute
values of the residuals is lowest for halocarbons (0.057)
and highest for hydrocarbons (0.359). When all com-
pounds of the training set (n=96) were considered
(Table 4), the following relation was obtained:

ln S ¼ 1:006 �DCWða;NNCÞ ð4Þ

The insignificant intercept in Eq. 4 was set to zero.

Table 3 Optimized correlation weights for different local invariants
(obtained by the Monte Carlo optimization procedure)

Invariant type local invariant Optimized weight

ak H �0.140
C �0.345
O 1.696
S �3.501
Cl �1.193
Br �1.393
I �1.959

NNCk 0100 1.550
0110 �0.193
0211 0.714
0220 0.237
0301 �1.243
0310 �0.259
0312 �0.180
0320 4.019
0321 0.020
0401 2.722
0402 �0.039
0403 1.132
0412 1.156
0413 �0.327
0421 1.736
0422 �0.243
0430 3.046
0431 0.036
0440 0.415

Table 4 Relations of water solubility (ln S) of different subsets of the training set with the optimized molecular descriptor (DCW)a

Type of compound Regression coefficient Statistics

b (se) a (se) ra
2 (r) r2 (s) F (AVRES)

alcohols (n=37) 0.993 (0.010) –b 0.993 (0.996) 0.993 (0.320) 10187.5 (0.242)
esters (n=16) 0.903 (0.032) �0.435 (0.172) 0.981 (0.991) 0.983 (0.371) 794.2 (0.279)
ethers (n=6) 0.962 (0.047) –b 0.965 (0.982) 0.965 (0.381) 417.8 (0.240)
Halocarbons (n=8) 1.002 (0.006) –b 0.997 (0.999) 0.997 (0.084) 24231.4 (0.057)
Hydrocarbons (n=22) 1.030 (0.013) –b 0.957 (0.978) 0.957 (0.473) 6385.0 (0.359)
Ketones (n=7) 1.083 (0.028) 0.191c (0.078) 0.996 (0.998) 0.997 (0.114) 1513.0 (0.076)
Alld (n=96) 1.006 (0.007) –b 0.987 (0.994) 0.987 (0.380) 22062.6 (0.284)

aModel Equation: ln S=a+b*DCW (a, NNC)
bIntercept set to zero
cSignificant at 90% level
dLeave-one-out cross-validation statistics: q2=0.987, SDEP=0.386
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From Table 4, it can be observed that the above
equation could predict and explain 98.7% of the vari-
ance of the ln S values of the training set. Out of 96
compounds, 1,1-diethylpentanol, isopropyl butyrate,
ethyl decanoate, ethyl propyl ether, 2,4-dimethylpentane
and n-octane acted as outliers in the case of modeling of
all compounds (training set) with the molecular
descriptor. Equation 4 was applied to the compounds of
the training set and test set to calculate the ln S values as
shown in Table 2.

The results of relations of ln S values of different
subsets of the test set with the molecular descriptor
(DCW) are given in Table 5. It is observed that the
descriptor could explain the variance of ln S values to
the extent of 98.1% for alcohols (n=23), 98.6% for
esters (n=27), 95.7% for ethers (n=10), 84.7% for
halocarbons (n=12), 92.8% for hydrocarbons (n=19)
and 98.7% for ketones (n=6). The average of the
absolute values of the residuals is highest for halo-
carbons (0.430) and lowest for ketones (0.150). When
all compounds of the test set (n=97) were considered
(Table 5), the molecular descriptor could explain
98.6% of the variance. Out of 97 compounds, diethyl
ether, cyclooctane, 2,2-dimethylpentane and 2-buta-
none acted as outliers while modeling all compounds
(test set) with the molecular descriptor. When Eq. 4
was used to predict the ln S values of the compounds
of the test set (Table 2), the rpred

2 value was found to
be 0.988 (Table 5).

The results of relations of ln S values of different
subsets of the combined set with the molecular descrip-
tor (DCW) are given in Table 6. It is observed that the
descriptor could explain the variance of ln S values to
the extent of 99.2% for alcohols (n=60), 98.5% for es-
ters (n=43), 97.5% for ethers (n=16), 92.0% for halo-
carbons (n=20), 94.8% for hydrocarbons (n=41) and
98.8% for ketones (n=13). The average of the absolute
values of the residuals was lowest for ketones (0.132)
and highest for hydrocarbons (0.344). When all com-
pounds of the combined sets (n=193) were considered
(Table 6), the molecular descriptor could explain 98.7%
of the variance. Out of 193 compounds, 1,1-diethyl-
pentanol, n-hexanol, isopropyl butyrate, ethyl decano-
ate, ethyl propyl ether, 2,4-dimethylpentane, 2,2,4-
trimethylpentane, cycloheptane, n-octane, diethyl ether,
2,2-dimethylpentane and 2-butanone acted as outliers in
case of modeling of all compounds (combined set) with
the molecular descriptor.

The same data set was modeled previously [46] using
molecular connectivity (1vv), molecular negentropy and
TAU indices. The statistical quality of the QSPR rela-
tion obtained in the present paper considering all the
compounds (n=193) is better than the relations ob-
tained previously [46].

The present analysis shows that the optimization of
correlation weights scheme can generate statistically
acceptable models for water solubility of diverse func-
tional aliphatic compounds. Moreover, the scheme does

Table 5 Relations of water solubility (ln S) of different subsets of the test set with the optimized molecular descriptor (DCW)a

Type of compound Regression coefficient Statistics

b (se) a (se) ra
2 (r) r2 (s) F (AVRES)

alcohols (n=23) 0.973 (0.018) –b 0.981 (0.990) 0.981 (0.239) 2904.1 (0.201)
esters (n=27) 1.024 (0.016) –b 0.986 (0.993) 0.986 (0.206) 4066.0 (0.164)
ethers (n=10) 1.047 (0.074) 0.445 (0.118) 0.957 (0.981) 0.962 (0.269) 199.8 (0.203)
Halocarbons (n=12) 0.966 (0.032) –b 0.847 (0.920) 0.847 (0.511) 890.9 (0.430)
Hydrocarbons (n=19) 1.021 (0.013) –b 0.928 (0.963) 0.928 (0.419) 6628.4 (0.327)
Ketones (n=6) 1.259 (0.065) 0.581 (0.128) 0.987 (0.995) 0.989 (0.210) 370.8 (0.150)
Allc (n=97) 1.041 (0.013) 0.193 (0.054) 0.986 (0.993) 0.986 (0.342) 6715.7 (0.274)

aModel Equation: ln S=a+b*DCW (a, NNC)
bIntercept set to zero
cPrediction statistics: rpred

2 =0.988

Table 6 Relations of water solubility (ln S) of different subsets of the combined set with the optimized molecular descriptor (DCW)a

Type of compound Regression coefficient Statistics

b (se) a (se) ra
2 (r) r2 (s) F (AVRES)

alcohols (n=60) 0.991 (0.008) –b 0.992 (0.996) 0.992 (0.291) 14257.1 (0.229)
esters (n=43) 0.954 (0.018) �0.160 (0.069) 0.985 (0.993) 0.985 (0.303) 2779.6 (0.229)
ethers (n=16) 1.066 (0.044) 0.435 (0.105) 0.975 (0.988) 0.977 (0.285) 588.4 (0.227)
Halocarbons (n=20) 0.981 (0.020) –b 0.920 (0.959) 0.920 (0.401) 2519.7 (0.306)
Hydrocarbons (n=41) 1.026 (0.009) –b 0.948 (0.974) 0.948 (0.445) 13114.7 (0.344)
Ketones (n=13) 1.157 (0.037) 0.398 (0.092) 0.988 (0.994) 0.989 (0.203) 961.3 (0.132)
Allc (n=193) 1.025 (0.008) 0.121 (0.042) 0.987 (0.994) 0.987 (0.364) 14879.2 (0.277)

aModel Equation: ln S=a+b* DCW (a, NNC)
bIntercept set to zero
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not require complex calculation of diverse descriptors
and statistical analysis for proper selection of descriptors
and intercorrelation among them. Furthermore, as each
‘elementary’ molecular fragment has been provided with
a ‘personal’ numerical local descriptor, one can identify
vertices that increase/decrease the property under anal-
ysis. Thus, the scheme merits further assessment on
exploring QSPR/QSAR of different physicochemical
properties/biological activity data using different local
invariants to justify its suitability in modeling studies.
Furthermore, the present study shows the successful use
of nearest neighboring codes as useful local invariants in
the optimization of correlation weights scheme, which
warrants extensive evaluation.
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